Вопрос задан 21.05.2019 в 23:58. Предмет Геометрия. Спрашивает Шамина Валерия.

Стороны АВ и АС треугольника АВС равны соответственно 6 см и 3√5 см. Найти площадь треугольника,

если биссектриса угла А делит высоту, проведённую из вершины В, в отношении 3 : 2, считая от вершины В.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шамсутдинова Аделя.
По заданию высота ВН делится биссектрисой угла А на 2 части.
Пусть это 2к и 3к.
Обозначим АН = х.
По свойству биссектрисы 2к/3к = х/6,
Отсюда получаем х = АН = (6*2)/3 = 4 см.
Теперь можно найти высоту ВН:
ВН = √(6²-4²) = √(36-16) = √20 = 2√5 см.
Площадь S = (1/2)*АС*ВН = (1/2)*3√5*2√5 = 3*5 = 15 см². 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос