
Вопрос задан 21.05.2019 в 23:58.
Предмет Геометрия.
Спрашивает Шамина Валерия.
Стороны АВ и АС треугольника АВС равны соответственно 6 см и 3√5 см. Найти площадь треугольника,
если биссектриса угла А делит высоту, проведённую из вершины В, в отношении 3 : 2, считая от вершины В.

Ответы на вопрос

Отвечает Шамсутдинова Аделя.
По заданию высота ВН делится биссектрисой угла А на 2 части.
Пусть это 2к и 3к.
Обозначим АН = х.
По свойству биссектрисы 2к/3к = х/6,
Отсюда получаем х = АН = (6*2)/3 = 4 см.
Теперь можно найти высоту ВН:
ВН = √(6²-4²) = √(36-16) = √20 = 2√5 см.
Площадь S = (1/2)*АС*ВН = (1/2)*3√5*2√5 = 3*5 = 15 см².
Пусть это 2к и 3к.
Обозначим АН = х.
По свойству биссектрисы 2к/3к = х/6,
Отсюда получаем х = АН = (6*2)/3 = 4 см.
Теперь можно найти высоту ВН:
ВН = √(6²-4²) = √(36-16) = √20 = 2√5 см.
Площадь S = (1/2)*АС*ВН = (1/2)*3√5*2√5 = 3*5 = 15 см².


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili