Вопрос задан 20.05.2019 в 19:09. Предмет Геометрия. Спрашивает Мирсалимбаева Милана.

В треугольнике ABC на сторонах AB и BC взяты точки M и N соответственно так что AM:BM=3:2 и

AN:NC=4:5. В каком отношении прямая проходящая через точку m параллельно BC делит отрезок BN? С Рисунком если можно. Ответ : 18:7
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Почепаева София.

Для решения нам необходимо найти, какую часть от АС составляют NK  и АК

Т.К. МК || ВС, то треугольники АМК и АВС подобны по равенству углов при параллельных МА и ВС и секущих АВ и АС. 

Из подобия следует отношение: 

 АК:КС=АМ:МВ=3:2, т.е. АК=3/5, а КС=2/5 стороны АС

По условию АN:NC=4/5, значит, АС=4+5=9 частей. 

АN= 4/9 АС

Тогда NK=AK-AN=3/5-4/9=7/45

По т.Менелая 

(АМ/ВМ)*(ВО/ОN)*(NK/KA)=1

(3/2)*(BO/OK)*[(7/45)/(3/5)]=1

(7/18)*(BO/ON)=1

(BO/ON)=1:(7/18)

BO/ON=18/7

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос