Вопрос задан 06.05.2019 в 00:04. Предмет Геометрия. Спрашивает Росолов Максим.

Один из углов которые образует сторона ромба с его диагоналями больше другово на 20 градусов .найти

углы ромба
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гурьянова Ярослава.
См. рисунок
∠1 >∠2  на  20°
Так как диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и являются биссектрисами, то из прямоугольного треугольника АВО:

∠1 + ∠2 = 90°
∠1 = ∠2 + 20°, то 

(∠2 + 20°) + ∠2 = 90°    ⇒    ∠2 = (90° - 20 °)/2=35°
значит ∠1 = 55°

∠ А = ∠1 + ∠1 = 110°
Противоположные углы ромба равны . Значит  ∠ С = 110°
∠B = ∠2 + ∠2= 70°     и    ∠D = 70°
Ответ.∠ А =  ∠ С = 110°
∠B =  ∠D = 70°


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Angles of a Rhombus

To find the angles of a rhombus, we need to know that a rhombus is a quadrilateral with all four sides of equal length. The diagonals of a rhombus bisect each other at right angles. Let's solve the problem step by step.

Let's assume that one of the angles formed by a side of the rhombus and its diagonals is x degrees. According to the problem statement, the other angle formed by the same side and its diagonals is 20 degrees greater than x.

Let's denote the angles as follows: - Angle formed by a side and its diagonals: x degrees - Other angle formed by the same side and its diagonals: x + 20 degrees

To find the remaining angles of the rhombus, we can use the following properties:

1. The sum of all angles in a rhombus is equal to 360 degrees. 2. Opposite angles in a rhombus are equal.

Using these properties, we can calculate the angles of the rhombus.

Solution:

Let's denote the angles of the rhombus as follows: - Angle at vertex A: A - Angle at vertex B: B - Angle at vertex C: C - Angle at vertex D: D

According to the properties mentioned above, we can write the following equations:

1. A + B + C + D = 360 (Sum of all angles in a rhombus is 360 degrees). 2. A = C (Opposite angles in a rhombus are equal). 3. B = D (Opposite angles in a rhombus are equal). 4. A + D = x (Angle formed by a side and its diagonals is x degrees). 5. B + C = x + 20 (Other angle formed by the same side and its diagonals is x + 20 degrees).

Using these equations, we can solve for the angles of the rhombus.

Let's substitute equations 2 and 3 into equation 1: - A + B + A + B = 360 - 2A + 2B = 360 - A + B = 180

Now, let's substitute equations 4 and 5 into equation 1: - A + D + B + C = 360 - x + B + x + 20 = 360 - 2x + B + 20 = 360 - 2x + B = 340

We have two equations: - A + B = 180 - 2x + B = 340

By solving these equations simultaneously, we can find the values of A, B, and x.

Unfortunately, the search results did not provide specific values for the angles of the rhombus. However, you can use the equations and the given information to solve for the angles of the rhombus.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос