
Боковая грань правильной четырёхугольной пирамиды наклонена к плоскости основания под углом 60
градусов площадь основания пирамиды 16 найти боковую поверхность пирамиды.

Ответы на вопрос

Радиус вписанной окружности (проекция апофемы) r = 2
Из оределения косинуса найдем апофему (апоф. )
r/апоф. =cos60
Апофема =2
(или r лежит протв угла 30 гр апоф = 1*2 = 2)
Sбок. = р*апоф. (р - полупериметр основания) = 8*2=16



Given Information
We are given the following information about a regular quadrilateral pyramid: - The lateral face of the pyramid is inclined to the base plane at an angle of 60 degrees. - The area of the base of the pyramid is 16.Finding the lateral surface area of the pyramid
To find the lateral surface area of the pyramid, we need to know the slant height of the lateral face. Unfortunately, the given information does not directly provide the slant height. However, we can use the given angle and the side length of the base to find the slant height.Let's denote the side length of the base as s and the slant height as l.
Using trigonometry, we can relate the side length of the base, the slant height, and the angle between the lateral face and the base. The formula is as follows:
l = s * sin(angle)
Now, we can substitute the given values into the formula to find the slant height:
l = s * sin(60 degrees)
To find the lateral surface area, we need to calculate the area of each lateral face and then sum them up. The lateral surface area of each face is given by:
A_lateral_face = (1/2) * s * l
Substituting the value of the slant height, we get:
A_lateral_face = (1/2) * s * (s * sin(60 degrees))
Since the pyramid is regular, all the lateral faces are congruent, so we can multiply the area of one face by the number of faces to get the total lateral surface area.
The number of lateral faces in a quadrilateral pyramid is 4.
Therefore, the lateral surface area of the pyramid is:
A_lateral_surface = 4 * A_lateral_face
Now, let's calculate the lateral surface area using the given information.
Calculation
Given: - Angle between the lateral face and the base = 60 degrees - Area of the base = 16Using the formula for the slant height: l = s * sin(60 degrees)
Using the formula for the lateral surface area of each face: A_lateral_face = (1/2) * s * (s * sin(60 degrees))
The lateral surface area of the pyramid is: A_lateral_surface = 4 * A_lateral_face
Let's substitute the values and calculate the lateral surface area.
Solution
Using the given information, we can calculate the lateral surface area of the pyramid.The side length of the base (s) can be found by taking the square root of the area of the base (16): s = sqrt(16) = 4
The slant height (l) can be calculated using the formula: l = s * sin(60 degrees) = 4 * sin(60 degrees)
Now, we can calculate the lateral surface area of each face: A_lateral_face = (1/2) * s * (s * sin(60 degrees)) = (1/2) * 4 * (4 * sin(60 degrees))
Finally, we can calculate the total lateral surface area of the pyramid: A_lateral_surface = 4 * A_lateral_face = 4 * [(1/2) * 4 * (4 * sin(60 degrees))]
Let's calculate the values:
s = 4 l = 4 * sin(60 degrees) A_lateral_face = (1/2) * 4 * (4 * sin(60 degrees)) A_lateral_surface = 4 * [(1/2) * 4 * (4 * sin(60 degrees))]
Using a calculator, we find: s = 4 l ≈ 6.9282 A_lateral_face ≈ 27.7128 A_lateral_surface ≈ 110.8512
Therefore, the lateral surface area of the pyramid is approximately 110.8512 square units.
Answer
The lateral surface area of the given quadrilateral pyramid is approximately 110.8512 square units.

Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili