Вопрос задан 01.05.2019 в 13:14. Предмет Геометрия. Спрашивает Серов Данила.

Из данной токи окр-ти проведены диаметр и хорды равные радиусу.Найти угол между ними Можно

пожалуйста подробно
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Печёнкин Никита.
АС - хорда, АВ - диаметр, АО=СО - радиус, АС = АО = СО, значит треугольник АСО - равносторонний, все углы равны 60 градусов.
Ответ: 60 градусов
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Angle Between a Diameter and a Chord

To find the angle between a diameter and a chord when they are equal to the radius, we can use the following approach:

1. Understanding the Problem: - We are given a circle, and within this circle, a diameter and a chord are drawn. The diameter and the chord are both equal to the radius of the circle. We need to find the angle between the diameter and the chord.

2. Solution: - Let's denote the angle between the diameter and the chord as θ.

- We know that the angle subtended by a chord at the center of the circle is twice the angle subtended by it at any point on the circumference. This is known as the "angle subtended by a chord at the center is double the angle subtended by it at any point on the circumference" theorem.

- Since the chord is equal to the radius, the angle subtended by the chord at the circumference is 90 degrees.

- Therefore, the angle between the diameter and the chord is half of the angle subtended by the chord at the circumference, which is 45 degrees.

3. Conclusion: - The angle between the diameter and the chord, when they are equal to the radius, is 45 degrees.

This solution is based on the geometric properties of circles and the relationship between angles subtended by a chord at the center and at the circumference of a circle.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос