
Вопрос задан 06.05.2018 в 03:13.
Предмет Геометрия.
Спрашивает Носова Вероника.
Дан треугольник ABC. На стороне AB выбрана точка K, а на отрезке CK - точка L так, что AK=KL=1/2
KB. Известно, что угол САB= 45 градусов, угол СКB=60 градусов. Доказать, что AL=BL=CL

Ответы на вопрос

Отвечает Сембай Гулим.
Найдём угол AKC=180-BKC=120 , так как AK=KL то
LAK=(180-120)/2=30 , то есть LAC=45-30=15 , тогда как LCA=180-(AKC+LAK)=15 откуда ALC равнобедренный AL=CL , положим BK=2x , тогда по условию AK=KL=x , по теореме косинусов
BL=sqrt(4x^2+x^2-2x*x*cos60)=x*sqrt(3) ,
Аналогично
AL=sqrt(2x^2-2x^2*cos120)=x*sqrt(3)
То есть BL=AL=CL .


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili