Вопрос задан 17.03.2019 в 13:13. Предмет Геометрия. Спрашивает Musatovs Deniss.

боковое ребро правильной треугольной пирамиды равно 10,а сторона основания равна 6√3.Найдите высоту

пирамиды.(очень прошу решите по действиям).
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макарова Анжелика.
Боковое ребро образует вместе с высотой прямоугольный треугольник, в котором высота катет= h, боковое ребро гипотенуза= 10, а нижний катет является радиусом описанной окружности R того треугольника, что лежит в основани, стороны которого равны между собой и каждая = а= 6*корень из 3.
радиус находим по формуле:
a=R* корень из 3
6*корень из 3= R*корень из 3
R=6.
Теперь найдём высоту по теореме Пифагора:
h^2=10^2-6^2
h^2=100-36
h^2=64
h=8
ОТВЕТ: 8
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос