
Вопрос задан 03.05.2018 в 20:45.
Предмет Геометрия.
Спрашивает Афтаевы Саша-И-Ваня.
На стороне [AC] треугольника АВС выбрана точка В1, а на стороне [AB] – точка С1 так, что |AB1| :
|B1C| = 3 : 4, |AC1| : |C1B| = 5 : 2. Найдите, в каком отношении, считая от вершин треугольника, точка пересечения [BB1] и [CC1] делит каждый из этих отрезков.

Ответы на вопрос

Отвечает Василькова Анастасия.
Пусть точка пересечения отрезков ВВ1 и СС1 - точка К.
По теореме Менелая из треугольника АВВ1 и секущей СС1 имеем соотношение:
(АС1/С1В)*(ВК/КВ1)*(В1С/СА)=1, отсюда, подставляя известные данные, получаем: (5/2)*(ВК/КВ1)*(4/7)=1, а ВК/КВ1=7/10.
Точно так же из треугольника АСС1 и секущей ВВ1:
(АВ1/В1С)*(СК/КС1)*(С1В/ВА)=1 или (3/4)*(СК/КС1)*(2/7)=1 =>
СК/КС1=14/3.
Ответ: ВК/КВ1=7/10 и СК/КС1=13.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili