Вопрос задан 05.03.2019 в 03:44. Предмет Геометрия. Спрашивает Чуракова Соня.

Вычислите площадь заштрихованной фигуры, если BО=3 см, угол АОВ=120 градусов


0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шурыгин Никита.
Площадь сегмента круга равна разности площадей кругового сектора и треугольника, образованного двумя радиусами и хордой, стягивающей дугу сегмента.
В нашем случае R=3, α=120°. Sсект=πR²*α/360=π9*/3=3π.
Площадь треугольника АОВ Saob=(1/2)*R²Sin120. Sin120=Sin(180-60)=Sin60=√3/2.
Saob=(1/2)*R²Sin120 или Saob=(1/2)*9*√3/2=9*√3/4.
Тогда площадь заштрихованной фигуры (площадь сегмента) равна
Sсекг-Sтреуг=3π-9*√3/4. Это ответ.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос