Вопрос задан 01.03.2019 в 08:29. Предмет Геометрия. Спрашивает Лысенко Дарина.

НАЙДИТЕ КООРДИНАТЫ ВЕКТОРА a(1;2;3) b(2;-1;-2) 3a(a+b)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Илесов Батыр.
3 * ( а * (а+b ))

(a+b) = (1+2;2-1;3-3)
a* (a+b) = 3*1+1*2+1*3= 8
3*(à*(a+b))= 3*8 = 24
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала найдем координаты векторов a и b. У нас дано, что вектор a имеет координаты (1, 2, 3), а вектор b имеет координаты (2, -1, -2).

Теперь, чтобы найти 3a(a+b), мы сначала умножим вектор a на скаляр 3, а затем умножим результат на вектор (a+b).

Умножение вектора на скаляр происходит путем умножения каждой координаты вектора на этот скаляр. Поэтому, чтобы умножить вектор a на 3, мы просто умножим каждую его координату на 3:

3a = 3 * (1, 2, 3) = (3 * 1, 3 * 2, 3 * 3) = (3, 6, 9).

Теперь посчитаем сумму векторов a и b, сложив соответствующие координаты:

a + b = (1, 2, 3) + (2, -1, -2) = (1 + 2, 2 + (-1), 3 + (-2)) = (3, 1, 1).

Теперь умножим 3a на вектор (a+b), умножая каждую координату на соответствующую координату вектора (a+b):

3a(a+b) = (3, 6, 9) * (3, 1, 1) = (3 * 3, 6 * 1, 9 * 1) = (9, 6, 9).

Таким образом, координаты вектора 3a(a+b) равны (9, 6, 9).

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос