
Вопрос задан 25.02.2019 в 09:42.
Предмет Геометрия.
Спрашивает Мигович Ника.
У прямокутному трикутнику висота і бісектриса проведені з вершини прямого кута відповідно
дорівнюють h і l . Визначити площу трикутника. h=0,5, a l=0,7

Ответы на вопрос

Отвечает Торута Артём.
Рассмотрим треугольник, образованный высотой, биссектрисой и гипотенузой. косинус угла между высотой и биссектрисой будет равен
cos(fi)=h/l
fi = arccos(h/l)
угол между высотой и меньшим катетов составит
gamma=45-arccos(h/l)
этот же угол будет являться наименьшим углом исходного треугольника, в силу подобия исходному двух малы треугольников, на которые высота делит исходный.
для нахождения площади разобьём исходный треугольник на три фигуры -
1. квадрат, построенный на биссектрисе как диагонали
s1=1/2*l^2
2. длинный треугольник с катетом l/√2 и противолежащим ему углом gamma
его площадь
s2=1/2*l/√2*l/√2/tg(gamma)=l^2/4*ctg(gamma)
3. треугольник покороче, с катетом l/√2 и прилежащим к нему углом gamma
s3=l^2/4*tg(gamma)
суммарная площадь
s=l^2/4(2+tg(gamma)+ctg(gamma))
подставим наши числовые данные
gamma=45-arccos(5/7)=0.5847°
остренький угол :)
s=1/16(2+tg(0.5847°)+ctg(0.5847°))=12.25
cos(fi)=h/l
fi = arccos(h/l)
угол между высотой и меньшим катетов составит
gamma=45-arccos(h/l)
этот же угол будет являться наименьшим углом исходного треугольника, в силу подобия исходному двух малы треугольников, на которые высота делит исходный.
для нахождения площади разобьём исходный треугольник на три фигуры -
1. квадрат, построенный на биссектрисе как диагонали
s1=1/2*l^2
2. длинный треугольник с катетом l/√2 и противолежащим ему углом gamma
его площадь
s2=1/2*l/√2*l/√2/tg(gamma)=l^2/4*ctg(gamma)
3. треугольник покороче, с катетом l/√2 и прилежащим к нему углом gamma
s3=l^2/4*tg(gamma)
суммарная площадь
s=l^2/4(2+tg(gamma)+ctg(gamma))
подставим наши числовые данные
gamma=45-arccos(5/7)=0.5847°
остренький угол :)
s=1/16(2+tg(0.5847°)+ctg(0.5847°))=12.25



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для вирішення цього завдання, ми можемо скористатись формулою для обчислення площі прямокутного трикутника:
Площа трикутника = (1/2) * (одна зі сторін, яка має спільну вершину з прямим кутом) * (інша сторона, яка має спільну вершину з прямим кутом)
У даному випадку, ми знаємо, що висота трикутника (проведена з вершини прямого кута) дорівнює h, а бісектриса трикутника (також проведена з вершини прямого кута) дорівнює l.
Також ми знаємо, що h = 0.5 і a + l = 0.7.
Давайте використаємо ці відомі дані для обчислення площі трикутника.
Обчислення площі трикутника:
Спочатку знайдемо значення іншої сторони, яка має спільну вершину


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili