
В конусе образующая равна 15 см и составляет с основанием угол 60 градусов. найдите радиус
описанной окружности

Ответы на вопрос

Ответ: 7.5см.



Finding the Radius of the Circumscribed Circle in a Cone
To find the radius of the circumscribed circle in a cone, we need to use the given information about the cone's slant height and the angle between the slant height and the base.
Given: - The length of the slant height (the height of the cone) is 15 cm. - The angle between the slant height and the base is 60 degrees.
To find the radius of the circumscribed circle, we can use trigonometric ratios. Specifically, we can use the sine function.
The sine of an angle is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse. In this case, the side opposite the angle is the radius of the circumscribed circle, and the hypotenuse is the slant height of the cone.
Using the sine function, we can write the following equation:
sin(60 degrees) = radius / slant height
Let's solve for the radius:
radius = slant height * sin(60 degrees)
Substituting the given values:
radius = 15 cm * sin(60 degrees)
To calculate the value of sin(60 degrees), we can refer to the trigonometric values of common angles. The sine of 60 degrees is equal to 0.866.
radius = 15 cm * 0.866
Calculating the result:
radius ≈ 12.99 cm
Therefore, the radius of the circumscribed circle in the given cone is approximately 12.99 cm.
Please note that the result is rounded to two decimal places.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili