Вопрос задан 14.02.2019 в 20:00. Предмет Геометрия. Спрашивает Обидина Анастасия.

Сторона равностороннего треугольника равна 12 корней из 3.Найдите медиану . Помогите ,пожалуйста !

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сорокина Анна.
∆АВС-равностор.треуг. (с основанием АВ- примечание при построении рисунка) АВ=12√3 по усл. Медиана по св.равнобедр.треуг также является биссектрисой. ∆АCD-прям.треуг по опр. АD=12√3:2=√432:√4=√108 AD^2+CD^2=AC^2- теорема Пифагора CD=√AC^2-AD^2=√(√432)^2-(√108)^2=√432-108=√324=18см.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения медианы равностороннего треугольника с известной стороной, можно воспользоваться формулой:

медиана = (сторона * √3) / 2

В данном случае, если сторона равностороннего треугольника равна 12 корня из 3, то подставляем это значение в формулу:

медиана = (12√3 * √3) / 2 медиана = (12 * 3) / 2 медиана = 36 / 2 медиана = 18

Таким образом, медиана равностороннего треугольника с стороной равной 12 корням из 3 равна 18.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос