Вопрос задан 24.01.2019 в 17:38. Предмет Геометрия. Спрашивает Почётова Саша.

Квадрат и прямоугольник с периметрами 20 и 26 см соответственно имеют общую сторону. Найдите угол

между плоскостями данных фигур,если расстояние между их сторонами, противолежащими общей стороне равно 7 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Агулов Паша.

Нарисуем квадрат АВСД. Выше добавим прямоугольник ВЕFС. Сторона ВС у них общая. Их плоскости образуют двугранный угол АВСЕ. ВС -ребро.Противолежащие ребру стороны АД и ЕF параллельны ребру, а стороны АВ и ЕВ ему перпендикулярны. Поэтому АЕ -расстояние между АД и ЕF. По условию АВСД квадрат со стороной 20/4=5.  Полупериметр прямоугольника ВЕFС=26/2=13. Отсюда его вторая сторона ВЕ=13-5=8.  По теореме косинусов а квадрат= в квадрат +с квадрат -2в*с* cos a. Отсюда косинус искомого угла ЕВА равен cos =(ВЕ квадрат+АВ квадрат-АЕ квадрат)/2*ВЕ*АВ= (64+25-49)/2*8*5=1/2. Отсюда угол междк плоскостями фигур равен 60 градусов.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос