
Вопрос задан 19.01.2019 в 10:14.
Предмет Геометрия.
Спрашивает Мороз Дима.
Углы AOC и BOC на рисунке 87 равны. Докажите, что если OA=OB, то угол ABC= углу BAC и AQ=BQ
Помогите, пожалуйста!!


Ответы на вопрос

Отвечает Санчук Максим.
Думала, думала и надумала)
1. Рассмотрим ΔAOC и ΔBOC: ∠AOC=∠BOC (по условию), AO=OB (по условию), CO - общая сторона. ΔAOC=ΔBOC (по двум сторонам и углу между ними), следовательно, CB=CA.
2. Рассмотрим ΔCQA и ΔCQB: CQ - общая сторона, CB=CA (из равенства выше), ∠BCQ=∠ACQ (CQ - биссектриса ∠C). ΔCQA=ΔCQB (по двум сторонам и углу между ними), следовательно, AQ=BQ ,∠ABC=∠BAC / что и требовалось доказать.
1. Рассмотрим ΔAOC и ΔBOC: ∠AOC=∠BOC (по условию), AO=OB (по условию), CO - общая сторона. ΔAOC=ΔBOC (по двум сторонам и углу между ними), следовательно, CB=CA.
2. Рассмотрим ΔCQA и ΔCQB: CQ - общая сторона, CB=CA (из равенства выше), ∠BCQ=∠ACQ (CQ - биссектриса ∠C). ΔCQA=ΔCQB (по двум сторонам и углу между ними), следовательно, AQ=BQ ,∠ABC=∠BAC / что и требовалось доказать.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili