
Вопрос задан 11.01.2019 в 16:51.
Предмет Геометрия.
Спрашивает Чуйская Айнура.
Даны координаты вершин четырехугольника ABCD: А (–6; 1), В (0; 5), С (6; –4), D (0; –8). Докажите,
что ABCD – прямоугольник, и найдите координаты точки пересечения его диагоналей.

Ответы на вопрос

Отвечает Гавриков Кирилл.
АС(6+6,-4-1) т.е. АС(12,-5) значит середина диагонали равна О(0,-1.5). вектор АВ (0+6,5-1) т.е. (6, 4), вектор ДС аналогично (6, 4). Координаты векторов равны, значит вектора равны АВ=ДС. Доказать что прямоугольник, воспользуемся теоремой Пифагора |ВД|^2=|АВ|^2+|АД|^2. Это выполниться, то четырехугольник прямоугольник.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili