Вопрос задан 01.01.2019 в 05:14. Предмет Геометрия. Спрашивает Жигелис Эля.

Длины боковых сторон трапеции равны 20 и 34, а длины оснований равны 18 и 60. Найдите площадь

трапеции.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ахметгалеев Даня.
Проведем высоты к большому основанию и получим прямоугольник, у которого противоположные стороны равны, т.е. 18=18
на долю оставшихся отрезков, которые являются катетами образовавшихся прямоуг. тр-ков, остается 42 см
обозначим один отрезок за х, то другой (42-x)
пусть катеты прямоугольных треугольников (высоты трапеции) = b
то по т. Пифагора составляем ур-е
20^2-x^2=b^2
34^2-(42-x)^2=b^2
так как обе части ур-я равны, то мы можем их приравнять
получаем ур-е:
400-x^2=1156-1764+84x-x^2
84x=1008
x=12
значит, меньший отрезок равен 12, то больший 42-12=30
по т. Пифагора найдем катет (высоту)
400-144=256 =16
высота трапеции = 16, то S=(18+60)/2*16=624
0 0
Отвечает Белоусова Татьяна.
 S=(18+60)÷2=39.................................

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос