Вопрос задан 31.12.2018 в 19:15. Предмет Геометрия. Спрашивает Левицкая Дарина.

ОДНА из сторон треугольника равна 25 см, а другая сторона делится точкой касания вписанной

окружности на отрезки длиной 22 см и 8 см, считая от конца первой стороны. найдите радиус вписанной окружности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жигулина Яна.


треугольник АВС, АС=25, К- точка касания окружности на ВС, КС=22, ВК=8, ВС=ВК+КС=8+22=30, Н-точка касания на АС, КС=СН =22 - как касательные, проведенные из одной точки, АН=АС-СН=25-22=3, Л-точка касания на АВ, АН=АЛ=3- как касательные..., ВК=ВЛ=8-как касательные..., АВ=АЛ+ВЛ=3+8=11, поупериметр (р)=(АВ+ВС+АС)/2=(11+30+25)/2=33, площадьАВС=корень(р*(р-АВ)*(р-ВС)*(р-АС))=корень(33*22*3*8)=132, радиус=площадь/полупериметр=132/33=4

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос