Вопрос задан 29.12.2018 в 17:16. Предмет Геометрия. Спрашивает Бичукова Дарья.

Вершины четырехугольника ABCDявляются серединами сторончетырехугольника, диагоналикоторого равны 6

дм ипересекаются под углом 60°.Вычислите площадьчетырехугольника ABCD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Приходько София.
Вершины четырехугольника ABCD
являются серединами сторон
четырехугольника abcd
так как d1=d2, значит abcd -прямоугольник, следовательно АВСД тоже прям-к
S(abcd) = 1/2 *d1*d2*sin60 =1/2 *6*6*sin60=9√3
из подобия четырехугольников следует
S(ABCD)/S(abcd) = (1/2)^2 = 1/4
S(ABCD) = 1
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос