
Вопрос задан 29.12.2018 в 17:16.
Предмет Геометрия.
Спрашивает Бичукова Дарья.
Вершины четырехугольника ABCDявляются серединами сторончетырехугольника, диагоналикоторого равны 6
дм ипересекаются под углом 60°.Вычислите площадьчетырехугольника ABCD.

Ответы на вопрос

Отвечает Приходько София.
Вершины четырехугольника ABCD
являются серединами сторон
четырехугольника abcd
так как d1=d2, значит abcd -прямоугольник, следовательно АВСД тоже прям-к
S(abcd) = 1/2 *d1*d2*sin60 =1/2 *6*6*sin60=9√3
из подобия четырехугольников следует
S(ABCD)/S(abcd) = (1/2)^2 = 1/4
S(ABCD) = 1
являются серединами сторон
четырехугольника abcd
так как d1=d2, значит abcd -прямоугольник, следовательно АВСД тоже прям-к
S(abcd) = 1/2 *d1*d2*sin60 =1/2 *6*6*sin60=9√3
из подобия четырехугольников следует
S(ABCD)/S(abcd) = (1/2)^2 = 1/4
S(ABCD) = 1


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili