
Катеты СВ и СА прямоугольного треугольника АВС равны 9 и 12 соответственно. М - точка пересечения
медиан. Найдите длину отрезка СМ.

Ответы на вопрос

АВ = √(81+144) = √225 = 15.
Медиана СД равна половине гипотенузы: СД = 15/2 = 7,5.
Точка М делит СД в отношении 2:1 от точки С.
Приходим к ответу: СМ = 7,5*(2/3) = 5.



Task: Finding the length of segment CM in a right triangle ABC with given catheti
To find the length of segment CM in a right triangle ABC with given catheti, we can use the properties of medians in a triangle.
Let's start by understanding the properties of medians in a triangle:
- A median of a triangle is a line segment that connects a vertex of the triangle to the midpoint of the opposite side. - The medians of a triangle intersect at a point called the centroid, which divides each median into two segments in a 2:1 ratio. - The centroid divides each median into two segments: one segment from the vertex to the centroid, and another segment from the centroid to the midpoint of the opposite side.
In our case, M is the point of intersection of the medians, and we need to find the length of segment CM.
Solution:
To find the length of segment CM, we can use the property that the centroid divides each median into two segments in a 2:1 ratio.
Let's denote the length of segment CM as x. According to the 2:1 ratio, we can write:
CM = 2 * XM (1)
To find the length of XM, we can use the property that the centroid divides each median into two segments in a 2:1 ratio. Let's denote the length of segment AM as a. According to the 2:1 ratio, we can write:
AM = 2 * XM (2)
Now, let's find the length of segment AM. We know that AM is a median, which means it divides the side BC into two equal segments. Let's denote the length of segment BC as b. According to this information, we can write:
BC = 2 * AM (3)
We are given the lengths of the catheti AB and AC as 9 and 12, respectively. Since AB and AC are the sides of a right triangle, we can use the Pythagorean theorem to find the length of the hypotenuse BC:
BC = sqrt(AB^2 + AC^2) (4)
Substituting the given values, we have:
BC = sqrt(9^2 + 12^2) = sqrt(81 + 144) = sqrt(225) = 15 (5)
Now, we can substitute the value of BC into equation (3) to find the length of segment AM:
15 = 2 * AM (6)
Simplifying equation (6), we have:
AM = 15 / 2 = 7.5 (7)
Finally, we can substitute the value of AM into equation (2) to find the length of segment XM:
7.5 = 2 * XM (8)
Simplifying equation (8), we have:
XM = 7.5 / 2 = 3.75 (9)
Now, we can substitute the value of XM into equation (1) to find the length of segment CM:
CM = 2 * XM = 2 * 3.75 = 7.5
Therefore, the length of segment CM is 7.5.
Answer:
The length of segment CM in the right triangle ABC with catheti AB = 9 and AC = 12 is 7.5.

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili