Вопрос задан 18.08.2018 в 03:02. Предмет Геометрия. Спрашивает Яценко Лёня.

Угол В= углу С= 90°, угол ADC=50°, угол ADB=40°. Докажите, что треугольник ABD= треугольнику DCA.

(чертёж на фотографии) ПОМОГИТЕ ПОЖАЛУЙСТА!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Панкратова Полина.
1) ΔABD и ΔСDA - прямоугольные, так как ∠B = ∠C = 90°
2) в прямоугольном треугольнике сумма острых углов равна 90°
∠CAD + ∠ADC = 90°
∠CAD = 90° - ∠ADC = 90° - 50° = 40°
значит ∠CAD = ∠ADB = 40°
3) Рассмотрим прямоугольные  ΔABD и ΔСDA:
AD - общая гипотенуза
∠CAD = ∠ADB (по доказательству)
значит ΔABD = ΔСDA по гипотенузе и острому углу
0 0
Отвечает Нурмекен Айқын.
∠САD=90°-50°=40°, ∠BAD=90°-40°=50° т е ΔABD=ΔACD по общей стороне и прилегающим углам
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос