
Во сколько раз увеличиться объем шара , если его диаметр увеличить в 5 раз


Ответы на вопрос

ответ в 125раз



Calculating the Increase in Volume of a Sphere
To calculate the increase in volume of a sphere when its diameter is increased by 5 times, we can use the formula for the volume of a sphere, which is given by:
V = (4/3) * π * r^3
Where: - V = volume of the sphere - π (pi) is a constant approximately equal to 3.14159 - r = radius of the sphere
Increase in Volume Calculation
When the diameter of the sphere is increased by 5 times, the radius will also increase by 5 times. Let's denote the original radius as r and the new radius as 5r.
The original volume of the sphere is given by: V = (4/3) * π * r^3
The new volume of the sphere with the increased diameter is given by: V' = (4/3) * π * (5r)^3
To find the increase in volume, we can calculate the ratio of the new volume to the original volume: Increase in Volume = V' / V
Calculation Result
By substituting the values into the formulas and simplifying, we find that the increase in volume of the sphere when its diameter is increased by 5 times is approximately 125 times the original volume.
This calculation is based on the formula for the volume of a sphere and the relationship between the original and new radius.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili