Вопрос задан 01.07.2023 в 02:50. Предмет Геометрия. Спрашивает Пух Ашот.

3. Найдите высоту, опущенную на большую сторону треугольника, ec ero CTOPOHLI PABHbr: ) a=5 cm,

b= 7 cm, c= 6 cm; 2) a= 13 dm. b= 14 dm, c= 15 dm; 3) a= 24 cm, b= 25 cm, c=7 cm.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котикова Виктория.

Известны длины всех сторон , тогда высоту найдем по формуле

h = 2/a √p(p-a)(p-b)(p-c),

где p - полупериметр, a - длина стороны, на которую падает высота, b и c - длины двух других сторон треугольника.

1) h = 2/7 √(9*4*2*3) = 2/7 * 6√6 = (12√6)/7 см

2) h = 2/15 √(16*3*2*1) = 2/15 * 4√6 = (8√6)/15 см

3) h = 2/25 √(28*4*3*21) = 2/25 * 84 = 6,72 см

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения высоты, опущенной на большую сторону треугольника, можно использовать формулу:

h=2Sa,h = \frac{2 \cdot S}{a},

где hh - высота, SS - площадь треугольника, aa - длина большой стороны треугольника.

Площадь треугольника можно вычислить с помощью полупериметра pp и длин сторон aa, bb и cc с помощью формулы Герона:

S=p(pa)(pb)(pc),S = \sqrt{p \cdot (p - a) \cdot (p - b) \cdot (p - c)},

где p=a+b+c2p = \frac{a + b + c}{2}.

Давайте рассмотрим каждый из ваших случаев:

  1. a=5см,b=7см,c=6смa = 5 \, \text{см}, \, b = 7 \, \text{см}, \, c = 6 \, \text{см}:

    Сначала найдем полупериметр: p=5+7+62=9p = \frac{5 + 7 + 6}{2} = 9.

    Теперь вычислим площадь: S=9(95)(97)(96)=9423=18S = \sqrt{9 \cdot (9 - 5) \cdot (9 - 7) \cdot (9 - 6)} = \sqrt{9 \cdot 4 \cdot 2 \cdot 3} = 18.

    Теперь можем найти высоту: h=2185=365=7.2h = \frac{2 \cdot 18}{5} = \frac{36}{5} = 7.2.

  2. a=13дм,b=14дм,c=15дмa = 13 \, \text{дм}, \, b = 14 \, \text{дм}, \, c = 15 \, \text{дм}:

    Полупериметр: p=13+14+152=21p = \frac{13 + 14 + 15}{2} = 21.

    Площадь: S=21(2113)(2114)(2115)84.0S = \sqrt{21 \cdot (21 - 13) \cdot (21 - 14) \cdot (21 - 15)} \approx 84.0.

    Высота: h=284.01312.92h = \frac{2 \cdot 84.0}{13} \approx 12.92.

  3. a=24см,b=25см,c=7смa = 24 \, \text{см}, \, b = 25 \, \text{см}, \, c = 7 \, \text{см}:

    Полупериметр: p=24+25+72=28p = \frac{24 + 25 + 7}{2} = 28.

    Площадь: S=28(2824)(2825)(287)=284321=84S = \sqrt{28 \cdot (28 - 24) \cdot (28 - 25) \cdot (28 - 7)} = \sqrt{28 \cdot 4 \cdot 3 \cdot 21} = 84.

    Высота: h=28424=16824=7h = \frac{2 \cdot 84}{24} = \frac{168}{24} = 7.

Итак, для данных трех случаев высоты, опущенные на большую сторону, равны:

  1. 7.2см7.2 \, \text{см},
  2. 12.92дм12.92 \, \text{дм},
  3. 7см7 \, \text{см}.
0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос