
Вопрос задан 22.06.2018 в 08:46.
Предмет Геометрия.
Спрашивает Филимонова Настя.
Из точки,не принадлежащей данной плоскости,проведены к ней две наклонные,сумма длин которых равна
28 см.Проекции этих наклонных на плоскость равны 6 см и 8 см.Найдите длины наклонных.

Ответы на вопрос

Отвечает Стрілець Віталій.
Из точки(A),не принадлежащей данной плоскости,проведены к ней две наклонные(AC&AD),сумма длин которых равна 28 см.Проекции этих наклонных на плоскость равны 6(BD) см и 8(BC) см.Найдите длины наклонных.
AB-перпендикуляр к плоскости
получили пирамиду.
составляем систему:
AC^2=AB^2+BC^2
AD^2=AB^2+BD^2
AD=28-AC,тогда:
AC^2=AB^2+BC^2
(28-AC)^2=AB^2+BD^2
AC^2=AB^2+BC^2
28^2-56AC+AB^2+BC^2=AB^2+BD^2
56AC=28^2+BC^2-BD^2
AC=(784+ 64-36)/56=14.5
AD=28-AC=28-14.5=13.5


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili