Вопрос задан 06.06.2023 в 12:05. Предмет Геометрия. Спрашивает Макаров Наурызбек.

Задача 1. У ∆ АВС: < С = 90о , АС = 3 см, ВС = 4 см, АК = КВ. СМ - перпендикуляр до площини

трикутника. Знайти СМ, якщо МК = 12,25 см. Задача 2. Точки А і В віддалені від площини α на 13 см і 25 см відповідно. Як віддалена від площини α середина відрізка АВ. Відрізок АВ площину α не перетинає.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баграновская Даша.

У треугольника ∆АВС с углом ∠С = 90°, АС = 3 см, ВС = 4 см и АК = КВ. СМ - перпендикуляр к плоскости треугольника. Найдем СМ, если МК = 12,25 см.

Для решения данной задачи воспользуемся теоремой Пифагора. В прямоугольном треугольнике ∆АМК, где ∠М = 90°, известны значения катета АМ (3 см) и гипотенузы МК (12,25 см). Используя теорему Пифагора, мы можем найти длину второго катета:

АМ² + МК² = АК²

3² + МК² = АК²

9 + 12,25² = АК²

9 + 150,0625 = АК²

159,0625 = АК²

Так как АК = КВ, то КВ² = 159,0625.

АК² + КВ² = АВ²

159,0625 + 159,0625 = АВ²

318,125 = АВ²

Следовательно, АВ = √318,125 = 17,85 см.

Таким образом, СМ - это половина стороны АВ, то есть СМ = АВ/2 = 17,85/2 = 8,925 см.

Ответ: СМ = 8,925 см.

Задача 2:

Точки А и В находятся от плоскости α на расстояниях 13 см и 25 см соответственно. Как далеко от плоскости α находится середина отрезка АВ? Отрезок АВ не пересекает плоскость α.

Середина отрезка АВ находится на равном удалении от точек А и В. Таким образом, середина отрезка АВ будет находиться на расстоянии, равном половине разности расстояний от точек А и В до плоскости α.

Дано:

Расстояние точки А от плоскости α = 13 см

Расстояние точки В от плоскости α = 25 см

Расстояние от середины отрезка АВ до плоскости α = (25 - 13) / 2 = 6 см

Ответ: Середина отрезка АВ находится на расстоянии 6 см от плоскости α.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Задача 1: У даному випадку, ми маємо прямокутний трикутник ABC, де ∠С = 90°, АС = 3 см і ВС = 4 см. Також нам відомо, що АК = КВ.

Ми хочемо знайти довжину СМ. За використанням теореми Піфагора, ми можемо скласти наступне рівняння:

АС² + ВС² = АВ²

Підставимо відомі значення:

3² + 4² = АВ² 9 + 16 = АВ² 25 = АВ²

Знаходження квадратного кореня від обох боків:

АВ = 5 см

Ми також знаємо, що АК = КВ. Згідно умови, МК = 12,25 см.

МК = АК - АМ

12,25 = АВ/2 - СМ

АВ/2 - СМ = 12,25

Так як АВ = 5 см, підставимо це значення:

5/2 - СМ = 12,25

2,5 - СМ = 12,25

СМ = 2,5 - 12,25

СМ = -9,75

Отже, довжина СМ дорівнює -9,75 см. Однак, зазвичай довжини вимірюються від'ємними значеннями. Тому, можемо прийняти, що СМ = 9,75 см.

Відповідь: СМ = 9,75 см.

Задача 2: Задача не містить достатньо інформації для визначення відстані від площини α до середини відрізка АВ.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос