
Вопрос задан 28.01.2021 в 07:24.
Предмет Геометрия.
Спрашивает Асадулова Диана.
Стороны параллелограмма равны 4 см. и 5 см. Острый угол 60 градусов. Найдите его
диагонали

Ответы на вопрос

Отвечает Шатилов Павел.
Пусть в параллелограмме ABCD AB=CD=4, AD=BC=5, угол A равен 60 градусам. Рассмотрим треугольник ABD. Нам нужно найти величину диагонали BD, тогда как нам известны две другие стороны и угол между ними. Воспользуемся теоремой косинусов: BD²=AB²+AD²-2*AB*AD*cos(60)=4²+5²-2*4*5*1/2=16+25-20=21 ⇒ BD=√21.
Аналогично, в треугольнике ABC AC²=AB²+BC²-2*AB*BC*cos(120)=4²+5²-2*4*5*(-1/2)=16+25+20=61 ⇒ AC=√61
Таким образом, диагонали параллелограмма равны √21 и √61.
Аналогично, в треугольнике ABC AC²=AB²+BC²-2*AB*BC*cos(120)=4²+5²-2*4*5*(-1/2)=16+25+20=61 ⇒ AC=√61
Таким образом, диагонали параллелограмма равны √21 и √61.


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili