
Вопрос задан 22.01.2021 в 01:41.
Предмет Геометрия.
Спрашивает Воронежский Данила.
Ребро куба авсда1в1с1д1 равно а .постройте сечение куба проходящее через точку B1C и середины ребра
АД найдите площадь этого сечения

Ответы на вопрос

Отвечает Остроушко Юлия.
Плоскость пересекает противоположные грани куба по параллельным прямым.
А1Д║В1С. Построим отрезок МК║А1Д. В тр-ке АА1Д МК - средняя линия, значит АМ=А1М и МК=А1Д/2.
Диагональ квадрата А1Д=а√2, МК=а√2/2.
Тр-ки МА1В1 и СДК равны т.к. А1В1=СД, А1М=КД и оба прямоугольные, значит МВ1=СК.
В равнобедренной трапеции B1CКМ проведём высоту МР.
В1Р=(В1С-МК)/2=(а√2-а√2/2)/2=а√2/4.
В прямоугольном тр-ке МА1В1 МВ1²=А1В1²+МА1²=а²+а²/4=5а²/4.
В прямоугольном тр-ке МВ1Р:
МР²=МВ1²-В1Р²=(5а²/4)-(2а²/16)=(10а²-а²)/8=9а²/8,
МР=3а/2√2=3а√2/4.
Площадь трапеции В1СKM:
S=МР·(В1С+КМ)/2=3а√2·(а√2+а√2/2)/8=3а√2·3а√2/16=18а²/16=9а²/8(ед²) - это ответ.
А1Д║В1С. Построим отрезок МК║А1Д. В тр-ке АА1Д МК - средняя линия, значит АМ=А1М и МК=А1Д/2.
Диагональ квадрата А1Д=а√2, МК=а√2/2.
Тр-ки МА1В1 и СДК равны т.к. А1В1=СД, А1М=КД и оба прямоугольные, значит МВ1=СК.
В равнобедренной трапеции B1CКМ проведём высоту МР.
В1Р=(В1С-МК)/2=(а√2-а√2/2)/2=а√2/4.
В прямоугольном тр-ке МА1В1 МВ1²=А1В1²+МА1²=а²+а²/4=5а²/4.
В прямоугольном тр-ке МВ1Р:
МР²=МВ1²-В1Р²=(5а²/4)-(2а²/16)=(10а²-а²)/8=9а²/8,
МР=3а/2√2=3а√2/4.
Площадь трапеции В1СKM:
S=МР·(В1С+КМ)/2=3а√2·(а√2+а√2/2)/8=3а√2·3а√2/16=18а²/16=9а²/8(ед²) - это ответ.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili