Вопрос задан 14.06.2018 в 23:35. Предмет Геометрия. Спрашивает Скабёлкин Богдан.

Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна

360 см^2. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. Найдите площадь боковой поверхности пирамиды.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Борей Ульяна.

По усл. высота пирамиды проходит через т. пересечения диагоналей т.О поэтому SA=SC SB=SD( как наклонные имеющие равные проекции),треуг. SAB=SCD и SBC=SAD( по 3 сторонам) S бок= 2*(SAD+SDC) По т Пифагора:  SM=SO^2+OM^2, SE=SO^2+OE^2

S ABCD=AB*FE, 360=20*FE,FE=18

S ABCD= AD* MN, 360=20*MN,MN=10

SM= корень 12^2+5^2=13

SE=корень 12^2+9^2=15

S SAD= 1/2AD*SM=36*13/2 см^2

S SDC= 1/2 SD*SE=20*15/2 cм^2

S бок=(S SAD+S SDC)

S бок= 2*1/2(36*13+20*15)=768см^2

 

 

0 0
Отвечает Мартыненко Павел.

примерно так

SM=12^2+5^2=13

SE=12^2+9^2=15

S SAD= 1/2AD*SM=

36*13/2 см^2

S SDC= 1/2 SD*SE=

20*15/2 cм^2

S бок=(S SAD+S SDC)

S бок= 2*1/2(36*13+20*15)=768см^2

 

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос