Вопрос задан 14.11.2020 в 22:35. Предмет Геометрия. Спрашивает Каримов Василий.

Основание прямой четырехугольной призмы ABCDA1B1C1D1- прямоугольник ABCD,в котором AB=12, AD корень

из 31. Найдите косинус угла между плоскостью основанияпризмы и плоскостью проходящей через середину ребра AD перпендикулярно  BD1, если расстояни емежду прямыми AC и B1D1 равно 5.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Данилова Анастасия.

АС и B1D1 - это скрещивающиеся диагонали противоположных граней (оснований), поэтому расстояние между ними равно высоте призмы (или боковым ребрам). 

ВВ1 = 5;

Что касатеся основного вопроса задачи, то ответ лежит на поверхности. Нужно найти угол (косинус) между плоскостями, перпендикулярными ВD1 и ВВ1 (это - плоскость основания :)). Поскольку эти прямые пересекаются в точке В, нужный угол очевидно равен углу D1BB1 - как бы не была расположена плоскость сечения и как бы не был построен искомый линейный угол двугранного угла, его стороны будут перпендикулярны сторонам угла D1BB1 .

Осталось найти диагональ BD1

BD1^2 = 12^2 + 31 + 5^2  = 200; BD1 = 10√2;

cos(угол D1BB1) = В1В/D1B = 5/(10√2) = √2/4;

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос