
Вопрос задан 14.11.2020 в 22:35.
Предмет Геометрия.
Спрашивает Каримов Василий.
Основание прямой четырехугольной призмы ABCDA1B1C1D1- прямоугольник ABCD,в котором AB=12, AD корень
из 31. Найдите косинус угла между плоскостью основанияпризмы и плоскостью проходящей через середину ребра AD перпендикулярно BD1, если расстояни емежду прямыми AC и B1D1 равно 5.

Ответы на вопрос

Отвечает Данилова Анастасия.
АС и B1D1 - это скрещивающиеся диагонали противоположных граней (оснований), поэтому расстояние между ними равно высоте призмы (или боковым ребрам).
ВВ1 = 5;
Что касатеся основного вопроса задачи, то ответ лежит на поверхности. Нужно найти угол (косинус) между плоскостями, перпендикулярными ВD1 и ВВ1 (это - плоскость основания :)). Поскольку эти прямые пересекаются в точке В, нужный угол очевидно равен углу D1BB1 - как бы не была расположена плоскость сечения и как бы не был построен искомый линейный угол двугранного угла, его стороны будут перпендикулярны сторонам угла D1BB1 .
Осталось найти диагональ BD1
BD1^2 = 12^2 + 31 + 5^2 = 200; BD1 = 10√2;
cos(угол D1BB1) = В1В/D1B = 5/(10√2) = √2/4;


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili