
Вопрос задан 10.11.2020 в 05:58.
Предмет Геометрия.
Спрашивает Шарипбаева Айзат.
Биссектрисы KA и МB треугольника KMP пересекаются в точке O . Определите отношение KO:OA,если KB=18
дм, BP=12 дм и AP=20 дм

Ответы на вопрос

Отвечает Боброва Ирина.
1-й способ.
KP = KB + BP = 18 + 12 = 20 дм
По свойству биссектрисы: KM/MA = KP/AP
В △KMA MO – биссектриса. KM/KO = MA/OA ⟹ KM/MA = KO/OA
Значит, KO/OA = KP/AP = 30/20 = 3/2.
2-й способ.
Биссектрисы пересекаются в одной точке. ⟹ PO – биссектриса,
KP/KO = AP/OA ⟹ KP/AP = KO/OA = 30/20 = 3/2.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili