Вопрос задан 23.06.2023 в 14:39. Предмет Химия. Спрашивает Ильина Дарья.

Сколькими способами можно разложить 3 письма в 3 конверта​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куокканен Алёна.
В первый конверт 3 способа, во второй 2, а в третий 1, 6 способов
0 0
Отвечает Сайфутдинова Алина.

Ответ:

Конверты могут быть одинаковыми и разными.  Письма могут быть одинаковыми или разными.  В каждом конверте может оказаться только по одному или по множеству писем.

Итого имеем 2*2*2 = 8 возможных толкований этой задачи.  Первая подзадача по определению количества толкований решена ))

Начнем со случаев когда в каждом конверте должно оказаться только по одному письму.

В случае когда и конверты и письма одинаковы - 1 возможный вариант.  По одному одинаковому письму в одинаковых конвертах.

Когда конверты разные , а письма одинаковые , и наоборот  конверты одинаковые , а письма разные - также один возможный вариант. Случаи одного разного письма в одинаковых конвертах и одинакового письма в разных конвертах неотличимы.

Случай разных писем в разных конвертах - классическая задача на перестановки

Ответ

Р(3) = 3! = 6 возможных вариантов.

Теперь разберемся со случаями  когда в одном конверте может быть несколько писем.

При одинаковых письмах в одинаковых конвертах

1 - 1 - 1

2 - 1 - 0

3 - 0 - 0

три возможных варианта.

Случай разных писем в одинаковых конвертах.

1 - 1 - 1

0 - 1 - 2   3 варианта в зависимости от того какое письмо одно.

0 - 0 -3

Всего 5 вариантов.  

Случай одинаковых писем в разных конвертах.

1 - 1 - 1

0 - 1 - 2

0 - 2 - 1

1 - 0 - 2

1 - 2 - 0

2 - 0 - 1

2 - 1 - 0

0 - 0 - 3

0 - 3 - 0

3 - 0 - 0

десять возможных вариантов.

Ну и наконец случай разных конвертов и разных писем даёт нам

1 - 1 - 1  - 6 вариантов

0 - 1 - 2  - 3 варианта

0 - 2 - 1  - 3 варианта

1 - 0 - 2  - 3 варианта

1 - 2 - 0  - 3 варианта

2 - 0 - 1  - 3 варианта

2 - 1 - 0  - 3 варианта

0 - 0 - 3  - 1вариант

0 - 3 - 0  - 1вариант

3 - 0 - 0  - 1вариант

Итого   - можно и сразу , но расписано для понимания  3^3 = 27 вариантов.

Полный ответ на такую на первый взгляд простую задачу должен включать все возможные варианты, а то вдруг у Вас на экзамене по терверу  такой вот преподаватель попадется )))

P.S.   Когда уже решение было опубликовано - пришло мне замечание от благодарных студентов ( ну или от их приунывших преподавателей ).  

- Один ты что ли такой вредный?  

- А где варианты с двумя одинаковыми конвертами и письмами и одним разным?  

Приходится исправляться !  

Когда по одному письму в конверте.  

Случай (2 одинаковых конверта, одно отличное ) и ( 2 одинаковых письма одно отличное)  

K1 K1 K2

-----------

П1 П1 П2

П2 П1 П1

2 варианта  

Случай (2 одинаковых конверта, одно отличное ) и ( 3 различных письма)

K1 K1 K2

-----------

П1 П2 П3

П1 П3 П2

П3 П2 П1

3 варианта

Случай (3 различных конверта ) и ( 2 одинаковых письма одно отличное)

K1 K2 K3

----------

П1 П1 П2

П2 П1 П1

П1 П2 П1

3 варианта  

Когда по множеству писем в конверте.  

Случай  писем (2+1)  в одинаковых конвертах.  

П1-П1-П2  

П1П1-П2-0

П1П2-П1-0  

П1П1П3-0-0

Всего 4 варианта.  

Случай одинаковых писем в (2+1) конвертах.  

K1 K1 K2

----------

1 - 1 - 1  

0 - 1 - 2  

0 - 2 - 1  

1 - 2 - 0  

0 - 0 - 3  

3 - 0 - 0  

шесть возможных вариантов.

Случай (2+1) писем  в (2+1) конвертах  

K1 K1 K2  

-----------

П1-П1-П2

П1-П2-П1

0-П1-П1П2

0-П2-П1П1

0-П1П1-П2

0-П1П2-П1    

П1-П1П2-0

П2-П1П1-0

0-0-П1П1П2

П1П1П2-0-0  

Десять возможных вариантов.  

Случай разных писем в (2+1) конвертах

K1 K1 K2

-----------

П1-П2-П3

П1-П3-П2

П2-П3-П1

0-П1-П2П3

0-П2-П1П3

0-П3-П1П2  

0-П1П2-П3

0-П1П3-П2

0-П2П3-П1

П1-П2П3-0

П2-П1П3-0

П3-П1П2-0

0-0-П1П2П3

П1П2П3-0-0

14 вариантов

Случай (2+1) писем в разных конвертах

К1  К2  К3

------------

П1-П1-П2

П2-П1-П1

П1-П2-П1

0 -П1-П1П2

0-П2-П1П1

0-П1П1-П2

0-П1П2-П1

П1-0-П1П2

П2-0-П1П1

П1-П12-0

П2-П1П1-0

П1П1-0-П2

П1П2-0-П1

П1П1-П2-0

П1П2-П1-0

П1П1П2-0-0

0-П1П1П2-0

0-0-П1П1П2

18 вариантов.

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для разложения 3 писем в 3 конверта существует всего 6 способов. Это называется "принципом качества и размещения". Вот все 6 способов:

  1. Письмо 1 в конверт 1, письмо 2 в конверт 2, письмо 3 в конверт 3.
  2. Письмо 1 в конверт 1, письмо 2 в конверт 3, письмо 3 в конверт 2.
  3. Письмо 1 в конверт 2, письмо 2 в конверт 1, письмо 3 в конверт 3.
  4. Письмо 1 в конверт 2, письмо 2 в конверт 3, письмо 3 в конверт 1.
  5. Письмо 1 в конверт 3, письмо 2 в конверт 1, письмо 3 в конверт 2.
  6. Письмо 1 в конверт 3, письмо 2 в конверт 2, письмо 3 в конверт 1.

Все 6 вариантов позволяют разложить 3 письма в 3 конверта без повторений.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Химия

Последние заданные вопросы в категории Химия

Задать вопрос