
Дано: V(C2H2)=6л V(CH4)=10л Знайти: V(O)-?


Ответы на вопрос

Ответ:
CH4+3O2=CO2+2H2O
1 моль 3 моль
V(O2)=10*3=30 л



Given:
- Volume of ethyne (C2H2) = 6 L - Volume of methane (CH4) = 10 LTo find:
- Volume of oxygen (O)To solve this problem, we need to understand the stoichiometry of the reaction between C2H2 (ethyne) and O2 (oxygen) to produce CO2 (carbon dioxide) and H2O (water). The balanced equation for this reaction is:
2C2H2 + 5O2 → 4CO2 + 2H2O
From the balanced equation, we can see that 2 moles of ethyne react with 5 moles of oxygen to produce 4 moles of carbon dioxide and 2 moles of water.
To determine the volume of oxygen required, we first need to convert the given volumes of ethyne and methane into moles using the ideal gas law equation:
PV = nRT
Where: - P is the pressure (assuming constant) - V is the volume - n is the number of moles - R is the ideal gas constant - T is the temperature (assuming constant)
Since the pressure and temperature are assumed to be constant, we can rewrite the equation as:
V = n(RT/P)
The ideal gas constant (R) is approximately 0.0821 L·atm/(mol·K).
Let's calculate the number of moles of ethyne (C2H2) and methane (CH4) using their given volumes:
For ethyne (C2H2):
n(C2H2) = V(C2H2) x (P/RT)
Substituting the given values:
n(C2H2) = 6 L x (P/RT)
Similarly, for methane (CH4):
n(CH4) = V(CH4) x (P/RT)
n(CH4) = 10 L x (P/RT)
Since the pressure and temperature are not given, we can assume them to be constant and cancel them out from the equation. This leaves us with:
n(C2H2) = 6 L
n(CH4) = 10 L
Now, let's calculate the number of moles of oxygen required for the given volumes of ethyne and methane:
From the balanced equation, we know that 2 moles of ethyne react with 5 moles of oxygen. Therefore, the moles of oxygen required can be calculated as:
n(O2) = (n(C2H2) x 5) / 2
Substituting the value of n(C2H2) we calculated earlier:
n(O2) = (6 L x 5) / 2
Similarly, for methane, we know that 1 mole of methane reacts with 5 moles of oxygen. Therefore, the moles of oxygen required can be calculated as:
n(O2) = n(CH4) x 5
Substituting the value of n(CH4) we calculated earlier:
n(O2) = 10 L x 5
Now, we have the moles of oxygen required. To find the volume of oxygen, we can use the ideal gas law equation again:
V(O2) = n(O2) x (RT/P)
Since the pressure and temperature are assumed to be constant, we can rewrite the equation as:
V(O2) = n(O2) x (R/P)
Substituting the value of n(O2) we calculated earlier, and assuming a constant pressure (P), we can find the volume of oxygen (O2) required.
Please provide the value of the pressure (P) to proceed with the calculations.


Топ вопросов за вчера в категории Химия
Последние заданные вопросы в категории Химия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili