Вопрос задан 18.05.2018 в 01:07. Предмет Право. Спрашивает Гофф Фаридун.

В треугольнике АВС известны координаты его вершин. Найти уравнение стороны АС, уравнение высоты,

проведенной из вершины В, длину этой высоты, угол А. А (-5;6) В (-6;-1) С (4;-6)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Басов Саня.

Найдем уравнение прямой проходящей через точки А(3;12) и С(-6;0)
12=3к+с
0=-6к+с
Отнимем      9к=12⇒к=4/3
с=6к=6*4/3=8
у=4/3*х+8  или 4х-3у=24=0
найдем угол А по теореме косинусов
cosA=(AC²+AB²-BC²)/2AC*AB
AB²=(4-3)²+(5-12)²=1+49=50⇒AB=5√2
AC²=(-6-3)²+(0-12)²=81+144=225⇒AC=15
BC²=(-6-4)²+(0-5)²=100+25=125⇒BC=5√3
cosA=(225+50-125)/2*15*5√2=150/150√2=1/√2⇒<A=45
Найдем высоту BH опущенную на сторону АС
ΔABH прямоугольный,<A=45⇒<ABH=45⇒AH=BH
по теореме Пифагора 2BH²=AB²⇒BH=√AB²/2=√50/2=√25=5

0 0

Топ вопросов за вчера в категории Право

Последние заданные вопросы в категории Право

Задать вопрос