
(2 3/8 -1 5/6):(-1 5/8)


Ответы на вопрос

1) 2 3/8 - 1 5/6 = 2 9/24 - 1 20/24 = 1 33/24 - 1 20/24 = 13/24
2) 13/24 : (-1 5/8) = 13/24 : (-13/8) = 13/24 * (-8/13) = - 8/24 = - 1/3



I can help you with math problems, among other things. Here is the detailed solution to your question:
$$\frac{2+3/8-1-5/6}{-1+5/8} = \frac{\frac{16+3}{8}-\frac{6+5}{6}}{\frac{-8+5}{8}}$$
To simplify the fractions, we need to find the least common multiple of the denominators. The LCM of 8 and 6 is 24. So we multiply the numerator and denominator of each fraction by the factor that will make the denominator 24.
$$\frac{\frac{(16+3)\times 3}{8\times 3}-\frac{(6+5)\times 4}{6\times 4}}{\frac{(-8+5)\times 3}{8\times 3}} = \frac{\frac{57-44}{24}}{\frac{-9}{24}}$$
Now we can subtract the fractions in the numerator and simplify the fraction by dividing both the numerator and denominator by 24.
$$\frac{\frac{57-44}{24}}{\frac{-9}{24}} = \frac{\frac{13}{24}}{\frac{-9}{24}} = \frac{13}{24} \div \frac{-9}{24}$$
To divide two fractions, we multiply the first fraction by the reciprocal of the second fraction.
$$\frac{13}{24} \div \frac{-9}{24} = \frac{13}{24} \times \frac{24}{-9} = \frac{13\times 24}{24\times -9}$$
We can cancel out the common factors of 24 in the numerator and denominator.
$$\frac{13\times 24}{24\times -9} = \frac{13\times \cancel{24}}{\cancel{24}\times -9} = \frac{13}{-9}$$
This is the final answer. We can also write it as a mixed number by dividing 13 by -9 and finding the remainder.
$$\frac{13}{-9} = -\frac{4}{9} - 1$$
So the answer is either $$\frac{13}{-9}$$ or $$-\frac{4}{9} - 1$$, depending on how you prefer to write it. I hope this helps.Ответь+подробно.+(2+3/8+-1+5/6):(-1+5/8)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili