
Sin x/6=-1 решите пжл))


Ответы на вопрос

x=- 6п/2 +12пn, n принадлежитZ
x=-3п +12пn, n принадлежитZ



To solve the equation sin(x/6) = -1, we need to find the values of x that satisfy this equation.
First, let's recall the unit circle definition of the sine function. For any angle θ, sin(θ) represents the y-coordinate of the point on the unit circle corresponding to that angle.
Since sin(x/6) = -1, we need to find the angles x/6 for which the y-coordinate is -1. On the unit circle, the angle whose y-coordinate is -1 is π/2 radians (or 90 degrees). This means x/6 must be an angle whose sine is π/2.
Using the inverse sine function (also known as arcsine or sin^(-1)), we can find the solution:
x/6 = arcsin(-1)
The arcsine function returns an angle between -π/2 and π/2, so the solution for x/6 will be in that range.
The angle whose sine is -1 is -π/2, so we have:
x/6 = -π/2
To solve for x, we multiply both sides of the equation by 6:
x = -π/2 * 6
x = -3π
Therefore, the solution to the equation sin(x/6) = -1 is x = -3π (or -3 times pi).
Please note that this is one of the possible solutions, and there are infinitely many values of x that satisfy the equation sin(x/6) = -1, differing by multiples of 2π.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili