Вопрос задан 18.05.2020 в 19:25. Предмет Геометрия. Спрашивает Ефименко Евгений.

Зайки, выручайте! Основанием пирамиды MABCD является квадрат ABCD, ребро MD перпендикулярно к

плоскости основания, AD=DM=a. Найдите площадь боковой поверхности пирамиды. С рисунком можно, пожаааалуйста
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Прокопов Александр.
Все боковые грани - это прямоугольные треугольники.
ΔАМD=ΔСМD.
Определим площадь ΔАМD. По условию АD=МD=а.
S1=0,5а·а=0,5а². Площадь равного ему треугольника будет тоже 0,5а².
Площадь двух равных треугольников равна а²
ΔМАВ=ΔМDС.
ΔМАВ. АМ²=АD²+МD²=а²+а²=2а².
АМ=√2а²=а√2,
S(МАВ)=0,5а·а√2=0,5а²√2.
Площадь двух равных треугольников равна а²√2.
Площадь боковой поверхности пирамиды равна а²+а²√2=а²(1+√2).
Ответ: а²(1+√2) кв. ед.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос