Вопрос задан 09.05.2020 в 22:43. Предмет Геометрия. Спрашивает Поночевный Роман.

1)Найдите сторону правильного 10-угольника описанного около окружности радиуса 3. Ответ округлите

до сотых. 2)Найдите периметр правильного шестиугольник описанного около окружности радиуса 5. Ответ округлите до сотых. 3)Найдите сторону правильного треугольника, описанного около окружности, если сторона правильного 6-угольника, вписанного в эту окружность равна 5 √3
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Барышникова Дарья.
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения:
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
Ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10
√3/3, значит, 
P = 6a=10
√3/3*6=20√3 (cм) или 34.64 см.
Ответ: 20
√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5
√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
Ответ: 30 см.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос