
Вопрос задан 25.04.2020 в 04:24.
Предмет Геометрия.
Спрашивает Козак Вова.
Основания равнобедренной трапеции равны 12 и 42 боковая сторона равна 39 найдите длину диагонали
трапеции

Ответы на вопрос

Отвечает Тюкин Денис.
Обозначим трапецию АВСД, тогда АВ = 39, ВС = 12, АД = 42. Проведём высоту ВН, тогда в треугольнике АВН : АН = (42 - 12):2 = 15, а ВН =√39² - 15²=
=√(39 - 15)·(39 + 15) = √24·54 = 36. В треугольнике ВДН : НД = 42 - 15 = 27. Тогда ВД = √27² + 36² = √3²·9² + 3²·12² = √3²(9² + 12²) =45
ответ : длина диагонали тапеции равна 45
=√(39 - 15)·(39 + 15) = √24·54 = 36. В треугольнике ВДН : НД = 42 - 15 = 27. Тогда ВД = √27² + 36² = √3²·9² + 3²·12² = √3²(9² + 12²) =45
ответ : длина диагонали тапеции равна 45


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili