
Вопрос задан 17.04.2020 в 01:48.
Предмет Геометрия.
Спрашивает Визна Кристина.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям
параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 36.

Ответы на вопрос

Отвечает Ситкарева Катя.
Для удобства введем обозначения:
a - сторона ромба (они равны по определению ромба)
d - диагональ AC
36d - диагональ BD (по условию)
AE - k
EB - t
Площадь параллелограмма через диагонали равна BD*AC*sinα/2 = 36d*d*sinα/2 = 18d^2*sinα, где α - угол между диагоналями (при чем не важно какой, так как синусы обоих углов будут равны друг другу).
Так как стороны ромба параллельны диагоналям, образуется маленький параллелограмм, а значит противоположные углы равны (по свойству параллелограмма).
Рассмотрим треугольники ABC и EBF.
∠EBF - общий
∠BFE=∠BCA (это соответственные углы для параллельных прямых EF и AC с секущей FC)
Следовательно, треугольники ABC и EBF подобны (по первому признаку подобия ).
Тогда EF/AC=a/d=t/(t+k)
Аналогично, подобны и треугольники ABD и AEH.
Для них справедливо: a/36d=k/(t+k)
Складываем эти два уравнения:
a/d+a/36d=t/(t+k)+k/(t+k)
36a/36d+a/36d=(t+k)/(t+k)
37a/36d=1
37a=36d
a=36d/37
Sромба=a^2sinα
Sпараллелограмма=18d^2*sinα (это мы выяснили ранее)
Sромба/Sпараллелограмма=(a2sinα)/(18d2*sinα)=a2/(18d2)=(36d/37)2/(18d2)=(36^2*d^2)/(37^2*18*d^2)=1296/(37^2*18)=72/37^2
Ответ: 72/37^2
a - сторона ромба (они равны по определению ромба)
d - диагональ AC
36d - диагональ BD (по условию)
AE - k
EB - t
Площадь параллелограмма через диагонали равна BD*AC*sinα/2 = 36d*d*sinα/2 = 18d^2*sinα, где α - угол между диагоналями (при чем не важно какой, так как синусы обоих углов будут равны друг другу).
Так как стороны ромба параллельны диагоналям, образуется маленький параллелограмм, а значит противоположные углы равны (по свойству параллелограмма).
Рассмотрим треугольники ABC и EBF.
∠EBF - общий
∠BFE=∠BCA (это соответственные углы для параллельных прямых EF и AC с секущей FC)
Следовательно, треугольники ABC и EBF подобны (по первому признаку подобия ).
Тогда EF/AC=a/d=t/(t+k)
Аналогично, подобны и треугольники ABD и AEH.
Для них справедливо: a/36d=k/(t+k)
Складываем эти два уравнения:
a/d+a/36d=t/(t+k)+k/(t+k)
36a/36d+a/36d=(t+k)/(t+k)
37a/36d=1
37a=36d
a=36d/37
Sромба=a^2sinα
Sпараллелограмма=18d^2*sinα (это мы выяснили ранее)
Sромба/Sпараллелограмма=(a2sinα)/(18d2*sinα)=a2/(18d2)=(36d/37)2/(18d2)=(36^2*d^2)/(37^2*18*d^2)=1296/(37^2*18)=72/37^2
Ответ: 72/37^2


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili