
Вопрос задан 24.02.2020 в 12:03.
Предмет Геометрия.
Спрашивает Янова Даша.
В треугольнике ABC на сторонах AB и AC выбраны точки M и N так, что BM:MA=CN:NA=1:4. Оказалось, что
отрезок MN содержит центр окружности, вписанной в треугольник ABC. Найдите BC, если AB=25, AC=20

Ответы на вопрос

Отвечает Alvarado Daniel.
Для решения нам необходимо найти, какую часть от АС составляют NK и АК
Т.К. МК || ВС, то треугольники АМК и АВС подобны по равенству углов при параллельных МА и ВС и секущих АВ и АС.
Из подобия следует отношение:
АК:КС=АМ:МВ=3:2, т.е. АК=3/5, а КС=2/5 стороны АС
По условию АN:NC=4/5, значит, АС=4+5=9 частей.
АN= 4/9 АС
Тогда NK=AK-AN=3/5-4/9=7/45
По т.Менелая
(АМ/ВМ)*(ВО/ОN)*(NK/KA)=1
(3/2)*(BO/OK)*[(7/45)/(3/5)]=1
(7/18)*(BO/ON)=1
(BO/ON)=1:(7/18)
BO/ON=18/7


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili