Вопрос задан 30.05.2018 в 12:07. Предмет Геометрия. Спрашивает Билялова Ардана.

Дан куб АВСD А1В1С1D1 назовите вектор с началом и концом в вершинах куба, который вместе с двумя из

трех данных векторов составлял бы тройку некомпланарных векторов: а) ВА ВС ВВ1 б) АВ1 АD1 CC1 №2 В параллелепипеде АВСD А1В1С1D1 найдите вектор начало и конец которого являются вершинами паралеллипипеда , равный сумме векторов: а)ВА+ВС+ВВ1+В1А б)ВВ1+СD+A1D1+D1В №3 В правильном тетраэдре DABC точка О центр треугольника АВС точка М и N середины ребер АD и CD разложите: а)вектор ВD по векторам АМ АО ВС б) вектор АС по векторам ВN ВD ВA №4 В тетраэдре DABC точки М и N середины ребер DA DC: а)вектор МС по векторам ВА ВС ВD б) вектор АВ по векторам DM DN DB
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванова Мария.

1 а) ВА ВС ВВ1, в которой все три вектора, выходя из одной вершины, направлены в разные стороны. Во второй группе векторы АВ1 и СС1, будучи приведёнными к общему началу, лежат в одной плоскости.
Ответ: а) ВА ВС ВВ1.
2 а) ВА+ВС+ВВ1+В1А =ВК, так как
ВА+ВС=ВА+AD=BD;
BB1+B1A=BA; BD+BA=BD+DK(DK=BA)=BK.
Или так: BD+BB1=BD+DD1=BD1;
BD1+B1A=BD1+D1K(D1K=B1A)=BK. Решение не удовлетворяет условию.
б)ВВ1+СD+A1D1+D1В = BB=0, так как:
BB1+CD=BB1+B1A1=BA1;
BA1+A1D1+D1B=BB = 0.
3. а) 
Вектор BD=BA+AD.  BA=AH+HB; AD=2*AM.
AH=(3/2)*AO (так как АН - высота правильного треугольника и АО=(2/3)*АН).
НВ= - (1/2)ВС.  Тогда BD=(3/2)*AO - (1/2)ВС+2*AM. Или
BD=4AM - ВС+3AO.
б)  Вектор АС=BC-BA.  BC=BD+DC; DN=BN-BD; DC=2DN=2(BN-BD).
Тогда  АС=BD+2(BN-BD)-BA, или
АС= 2BN-BD-BA.
4. a)
Вектор MC=MA+AC. MA=(1/2)*DA, DA=BA-BD,
AC=BC-BA.  Тогда МС=(1/2)*(BA-BD) +BC-BA  или
МС=ВС-(ВА+BD)/2.
б)
Вектор АВ=DB-DA. DA=2DM.
AB=DB-2DM.
Или так: АВ=АС+СВ, АС=DC-DA,
AC=2(DN-DM) так как M и N - середины DA и DC)/
CB=DB-DC=DB-2DN.
AB=
2DN-2DM+DB-2DN = DB-2DM.



0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос