Вопрос задан 27.06.2019 в 09:04. Предмет Геометрия. Спрашивает Басанец Сёма.

Из точки вне окружности проведена секущая, образующая в окружности хорду АВ длиной 8 см. Кратчайшее

расстояние от данной точки до окружности равно 10 см, а до центра окружности - 17 см. Найдите расстояние от концов хорды АВ до данной точки.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федорак Марко.

Кратчайшее расстояние от точки М до окружности -перпендикуляр к касательной, проходящий через центр окружности О. По условию ОМ=17, ОК=10, тогда радиус окружности R=17-10=7. Проведём радиусы(смотри рисунок), к точкам А и В. По теореме косинусов найдём в треугольнике АОВ косинус угла А.  ВОквадрат=АОквадрат+АВквадрат-2*АО*АВ*cosA.  49=49+64+2*7*8*cosA. Отсюда cosA=0,57.  Также в треугольнике АОМ.   ОМквадрат=АОквадрат+ АМквадрат-2*АО*АМ*cosA.  289=49 +АМквадрат-2*7*АМ*0,57. Пусть АМ=Х, тогда Хквадрат-8Х-240=0. Решая квадратное уравнение получим Х=20, то есть искомые расстояния АМ=20, ВМ=20-8=12.

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос