
Вопрос задан 25.06.2019 в 14:04.
Предмет Геометрия.
Спрашивает Ткач Вася.
(Пожалуйста не пишите просто ответ покажите решение) Из пластинны имеющей форму правильного
треугольника S=9корень из 3 вырезан квадрат имеющий максимальную возможную площадь. Чему равен его периметр ???

Ответы на вопрос

Отвечает Портер Лейла.
Вершины вписанного квадрата лежат на сторонах правильного треугольника.
Сделаем рисунок и используем его при решении.
Обозначим сторону данного правильного треугольника а
Н - середина КМ и и середина АD
АН=HD
АК=MD
Пусть сторона AD квадрата АВСD равна х
Тогда АD=х,
а DМ =(а-х):2,
DМ противолежит углу 30°, поэтому
СМ=2DМ=2(а-х):2= а-х
Найдем сторону а треугольника, в который вписан квадрат, из его площади, равной по условию 9√3
Площадь равностороннего треугольника находят по формуле:
S=(а²√3):4
9√3=(а²√3):4
36√3=а²√3
а²=36
а=6
ДМ= (6-х):2
СМ=2 ДМ=(6-х)
СД=СМ·sin 60°=(6-х)·√3):2
СД=АД=х
2х=6√3-х√3
2х+х√3=6√3
х(2+√3)=6√3
х=6√3:(2+√3)
Периметр равен 4 СД
Р=4·6√3:(2+√3)=24 √3:(2+√3)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili