
Вопрос задан 25.05.2019 в 23:35.
Предмет Геометрия.
Спрашивает Рукосуев Александр.
В треугольнике АВС, АВ=ВС, угол САВ=30градусов, АЕ-биссектриса, ВЕ=8см, Найдите площадь
треугольника АВС. ответ должен получиться 75, 7 см².

Ответы на вопрос

Отвечает Кулак Миша.
∠ВСА = ∠ВАС = 30°, так как треугольник равнобедренный,
тогда ∠АВС = 180° - 2·30° = 120°
Проведем ВК - высоту и медиану.
Обозначим ЕС = х, АК = КВ = у. Тогда АВ = х + 8.
По свойству биссектрисы:
ВЕ : ЕС = АВ :АС
8 : x = (x + 8) : (2y)
16y = x(x + 8)
y = x(x + 8)/16
Из прямоугольного треугольника ВКС по определению косинуса:
y = BC·cos∠BCK
y = (x + 8)·√3/2
Из двух уравнений получаем:
x(x + 8)/16 = (x + 8)·√3/2
x/16 = √3/2
x = 8√3
AB = BC = 8 + 8√3 (см)
Sabc = 1/2 · AB · BC · sin120°
Sabc = 1/2 · (8 + 8√3)²·√3/2 = 16√3(√3 + 1)² = 16√3(4 + 2√3) = 32√3(2 + √3) (см²)
тогда ∠АВС = 180° - 2·30° = 120°
Проведем ВК - высоту и медиану.
Обозначим ЕС = х, АК = КВ = у. Тогда АВ = х + 8.
По свойству биссектрисы:
ВЕ : ЕС = АВ :АС
8 : x = (x + 8) : (2y)
16y = x(x + 8)
y = x(x + 8)/16
Из прямоугольного треугольника ВКС по определению косинуса:
y = BC·cos∠BCK
y = (x + 8)·√3/2
Из двух уравнений получаем:
x(x + 8)/16 = (x + 8)·√3/2
x/16 = √3/2
x = 8√3
AB = BC = 8 + 8√3 (см)
Sabc = 1/2 · AB · BC · sin120°
Sabc = 1/2 · (8 + 8√3)²·√3/2 = 16√3(√3 + 1)² = 16√3(4 + 2√3) = 32√3(2 + √3) (см²)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili