Вопрос задан 15.05.2018 в 19:49. Предмет Геометрия. Спрашивает Алиева Валентина.

СРОЧНО ПОЖАЛУЙСТА))2)Диагонали четырёхугольника ABCD пересекаются в точке O, AO*BO=CO*DO. Докажите

что площади треугольников ACB и ABD равны.1) на картинке Срочно
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кот Игорь.

S(ABD)=S(ABO)+S(AOD), S(ACB)=S(ABO)+S(BOC),
докажем, что площадь треугольника АОД=площади треугольника ВОС
S(AOD)=1/2OA*ODsinAOD
S(BOC)=1/2BO*OCsinBOCугол ВОС=углу АОД как вертикальные, значит и
 sin BOC=sinAOD
по свойству пропорции из АО*ВО=СО*ДО следует АО*ОД=ВО*ОС поэтому S(AOD)=S(BOC)

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос