
Вопрос задан 14.05.2018 в 21:43.
Предмет Геометрия.
Спрашивает Шубин Алексей.
8 класс. В треугольнике ABC AB = BC, AC = 4, высота BH равна 6 (точка H лежит на отрезке AC). Точка
M - середина BC, точка К лежит на отрезке AC и угол MKC - прямой. Отрезки AM и BH пересекаются в точке Q. Найдите: а) длину отрезка MK б) величину угла AMK в) отношение AQ : AM

Ответы на вопрос

Отвечает Романов Даниил.
1. MK --средняя линия ΔВНС, т.к. MK || BH
средняя линия треугольника = половине стороны, к которой параллельна))
2. ВН--медиана (т.к. ΔАВС равнобедренный), К --середина НС (по п.1.))
---> ΔАКМ равнобедренный и прямоугольный, углы при основании по 45°
3. медианы треугольника точкой пересечения делятся в отношении 2:1,
считая от вершины... АМ тоже медиана... ее длина -- 3 части)))



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili