Вопрос задан 07.04.2019 в 14:39. Предмет Геометрия. Спрашивает Чапенко Лера.

В треугольнике АВС ВД - медиана, АВ больше 2ВД. Докажите, что угол АВС+угол ВСД меньше угла ДВС.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Христюк Саша.
Остроим точку Е на середине стороны АВ. По условию АВ>2BD, значит EB>BD. ED II BC по обратной теореме Фалеса. Следовательно углы DBC и EDB равны как внутренние накрестлежащие. Также логично, что угол BED меньше угла EDB (т. к. EB>BD). Приняв все это, получаем: BAC+BCD=180-ABC=180-EBD-DBC=180-EBD-EDB=BED < EDB=DBC

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос