
Вопрос задан 05.05.2018 в 04:16.
Предмет Геометрия.
Спрашивает Филиппов Кирилл.
Помогите,пожайлуста, решить задачу: В треугольнике ABC биссектрисы углов пересекаются в точке M.
Найдите угол ABC, если он составляет одну треть угла AMC.


Ответы на вопрос

Отвечает Семашко Александра.
В треугольнике ABC биссектрисы углов пересекаются в точке M. Найдите угол ABC, если он составляет одну треть угла AMC.
В треугольнике сумма углов равна 180°
Запишем эту истину для треугольника АВС
∠А+∠В+∠С=180°
То же самое - для треугольника АМС
∠1/2 А+ ∠1/2 С+ ∠АМС=180°
Но по условию ∠АМС=3∠В, поэтому
∠1/2 А+ ∠1/2 С+ 3∠В=180°
Из треугольника АВС
∠А +∠С=180 -∠В
Найдем сумму половин углов А и С
(∠А +∠С):2=(180°-∠В):2
Подставим значение суммы половин углов А и С в уравнение для треугольника АМС
(180° -∠В):2 + 3∠В=180°
Умножим обе стороны уравнения на 2, чтобы избавиться от дроби:
180° -∠В +6∠В=360°
5∠В=180°
∠В=180°:5=36°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili