Вопрос задан 02.05.2018 в 06:53. Предмет Геометрия. Спрашивает Голик Данка.

В правильной четырехугольной пирамиде боковые грани наклонены к плоскости основание под углом 30

градусов,а ребро основания равно 6 см .Найдите объем пирамиды.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стрипа Юля.

Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани  — равные равнобедренные треугольники.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=6). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Двугранный угол 
SKО равен  30°.
Из прямоугольного ΔSKО найдем SО (OК=АВ/2=6/2=3):
SО=ОК*tg 30=3*1/√3=√3
Площадь основания Sосн=АВ²=6²=36
Объем
V=Sосн*SO/3=36*√3/3=12√3

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос