Вопрос задан 13.02.2019 в 04:36. Предмет Геометрия. Спрашивает Петрова Маша.

Сравните площади двух треугольников , на которые разделяются данный треугольник его медианой .

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Евгений.
Пусть дан треугольник АВС и медиана ВМ к стороне АС: АМ=CМ. Опустим также на сторону АС высоту ВН и распишем подробно площади треугольников АВМ и СВМ.
S(ABM)=1/2*BH*AM
S(CBM)=1/2*BH*CM
Т.к. АМ=СМ, то видим, что S(ABM)=S(CBM).
Ответ: площади получаюшихся треугольников равны,
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос